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We introduce the idea of implementation under ambiguity. In particular, we study 
maximin efficient notions for an ambiguous asymmetric information economy (i.e., 
economies where agents’ preferences are maximin à la Wald, 1950). The interest on 
the maximin preferences lies in the fact that maximin efficient allocations are always 
incentive compatible (de Castro and Yannelis, 2009), a result which is false with Bayesian 
preferences. A noncooperative notion called maximin equilibrium is introduced which 
provides a noncooperative foundation for individually rational and maximin efficient 
notions. Specifically, we show that given any arbitrary individually rational and ex-ante 
maximin efficient allocation, there is a direct revelation mechanism that yields the efficient 
allocation as its unique maximin equilibrium outcome. Thus, an incentive compatible, 
individually rational and efficient outcome can be reached by means of noncooperative 
behavior under ambiguity.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

There is a growing literature on applications of ambiguity aversion and non-expected utility in general to different areas 
in economics, e.g., Hansen and Sargent (2001) in Macroeconomics; Aryal and Stauber (2014), Bodoh-Creed (2012), Bose and 
Renou (2014), Bose et al. (2006), de Castro and Yannelis (2009, 2013), in game theory and mechanism design; Angelopoulos 
and Koutsougeras (2015), de Castro et al. (2011, 2014), He and Yannelis (2015), Liu (2014), Liu and Yannelis (2015) in 
general equilibrium; Dominiak et al. (2012), Haisley and Weber (2010), Ivanov (2011) in experimental economics; Cohen 
and Meilijson (2014) and Even and Lehrer (2014) in decision theory, among others. See also the symposium in Ellsberg et al.
(2011). Clearly, maximin preferences have been widely used in computer science and engineering, where analyses based on 
worst-case scenarios are widespread. Although our motivation is not computer science, but the implementation of efficient 
and incentive compatible allocations, it is worth noticing the increasing interest of maximin preferences in computer science 
and game theory. A lot of games are nowadays played by robots (in internet ads auctions and in auctions for bandwidth 
in congested networks, for instance), and these robots are programmed by computer engineers that may incorporate these 
preferences, since it is a natural way of thinking in engineering. Therefore, such preferences are not so uncommon as we 
might initially think.
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In this paper we study an ambiguous asymmetric information economy, i.e., an economy consisting of a finite set of states 
of nature, a finite set of agents, each of whom is characterized by a type set, a multi-prior set, a random initial endowment
and an ex post utility function. More importantly, the agents have maximin preferences, à la Wald.

In an ambiguous asymmetric information economy, any efficient allocation is incentive compatible with respect to the 
maximin preferences (de Castro and Yannelis, 2009). In other words, maximin preferences solve the conflict between incen-
tive compatibility and efficiency. Recall that in the standard expected utility (Bayesian) framework, an efficient allocation 
may not be incentive compatible as it was shown by Holmström and Myerson (1983).

But, could one provide a noncooperative foundation for the maximin efficient allocations in terms of some game theoretic 
solution concept? In other words, can individually rational and ex-ante maximin efficient allocations be reached by means 
of noncooperative behavior? What would be the appropriate game theoretic solution concept?

In view of an ambiguous asymmetric information economy, one should not expect to employ any Bayesian Nash type 
equilibrium notion. To this end, we introduce the idea of a maximin equilibrium. Roughly speaking, in a maximin equilibrium, 
each agent maximizes his payoff lowest bound, that is, each agent maximizes the payoff that takes into account the worst 
actions of all the other agents against him and also the worst state that can occur.

The main result of the paper is that given any arbitrary individually rational and ex-ante maximin efficient allocation, 
there is a direct revelation mechanism that yields this allocation as its unique maximin equilibrium outcome, i.e., each indi-
vidually rational and ex-ante maximin efficient allocation is implementable as a maximin equilibrium. A corollary of this 
result is that each maximin core allocation and each maximin value allocation is implementable as a maximin equilibrium. 
Therefore, incentive compatible, individually rational and efficient outcomes can be reached by means of noncooperative 
behavior under ambiguity.

The paper is organized as follows. Section 2 defines an ambiguous asymmetric information economy, and introduces 
the individually rational and ex-ante maximin efficient notions. In Section 3, we introduce the direct revelation mechanism, 
the maximin equilibrium, and present the main result of the paper. In Section 4, we also discuss the relationship of our 
result with de Castro and Yannelis (2009). In Section 5, we discuss the relationship between our paper and the robust 
implementation of Bergemann and Morris (2005, 2009). Finally, we conclude in Section 6.

2. Ambiguous asymmetric information economy

Let I be a set of N agents, i.e., I = {1, · · · , N}. Agent i’s type ti ∈ Ti summarizes his private information in the interim. 
The finite set of states of nature is T = T1 × · · · × T N , and t ∈ T is a state of nature.

Since each agent observes his type in the interim, it is natural to assume that at ex ante each agent is able to form a 
probability assessment over his types. That is, there is a measure µi generating ti .

Assumption 1. For each i and for each type ti , µi (ti) > 0.

Let !i be the set of all probability measures on T that agrees with µi ,

!i =

⎧
⎨

⎩probability measure πi : 2T → [0,1] |
∑

t−i

πi (ti, t−i) = µi (ti) ,∀ti ∈ Ti

⎫
⎬

⎭ .

Let Pi , a nonempty, closed and convex subset of !i , be agent i’s multi-prior set.
Let Rℓ

+ be the ℓ good commodity space. An agent receives his initial endowment ei : T → Rℓ
+ in the interim stage. That 

is, we have ei (ti, t−i) = ei
(
ti, t′

−i

)
for all t−i and t′

−i . In the terminology of auctions, this corresponds to private values 
endowments, and it is an assumption that was used by Jackson and Swindles (2005) for instance.

Now, let xi : T → Rℓ
+ denote agent i’s allocation (or in short, i-allocation). Denote by Li the set of all allocations of agent i, 

and by x = (x1, · · · , xN ) an allocation of the economy. An allocation x is said to be feasible, if for each t ∈ T , 
∑

i∈I xi (t) =∑
i∈I ei (t).
Let ui : Rℓ

+ × T → R be agent i’s ex post utility function, taking the form of ui (ci; t), where ci denotes agent i’s consump-
tion. Each agent knows his utility function in the interim, and therefore ui (ci; ti, t−i) = ui

(
ci; ti, t′

−i

)
for all t−i and t′

−i . We 
postulate that each agent i’s preferences on Li are maximin (see Gilboa and Schmeidler, 1989).

Definition 1. Take any two allocations of agent i, f i and hi , from the set Li . Agent i prefers f i to hi under the maximin 
preferences (written as f i ≽MP

i hi )

min
πi∈Pi

∑

t∈T

ui ( f i (t) ; t)πi (t) ≥ min
πi∈Pi

∑

t∈T

ui (hi (t) ; t)πi (t) . (1)
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The general multi-prior model includes both the Bayesian and the Wald-type maximin preferences of de Castro and 
Yannelis (2009)1 as special cases. Indeed, if Pi is a singleton set for each agent, then the multi-prior preferences become 
the Bayesian preferences. If Pi = !i for each agent, then the multi-prior preferences become the maximin preferences in 
de Castro and Yannelis (2009), where the following formulation is equivalent to (1),

∑

ti∈Ti

(
min

t−i∈T−i
ui ( f i (ti, t−i) ; ti, t−i)

)
µi (ti) ≥

∑

ti∈Ti

(
min

t−i∈T−i
ui (hi (ti, t−i) ; ti, t−i)

)
µi (ti) . (2)

Furthermore, agent i strictly prefers f i to hi , f i ≻MP
i hi , if he prefers f i to hi but not the reverse, i.e., f i ≽MP

i hi but hi !MP
i f i .

The interest of the preferences, used in de Castro and Yannelis (2009), comes from the fact that under these prefer-
ences any efficient allocation is incentive compatible. Furthermore, only these preferences have this property.2 Indeed, using 
Bayesian preferences, an efficient allocation may not be incentive compatible as it was shown by Holmström and Myer-
son (1983). Also, Ledyard (1977) showed that a core selecting mechanism may not be individually incentive compatible in 
a complete information setting. Furthermore, Ledyard (1978) showed that the introduction of incomplete information in 
the Bayesian sense may fail to create incentive compatibility, if a mechanism is not incentive compatible under complete 
information.

The standard notions of individual rationality and efficiency, when applied to agents with maximin preferences, can be 
stated as follows.

Definition 2. A feasible allocation x = (xi)i∈I is said to be (maximin) individually rational, if for each i ∈ I , xi ≽MP
i ei .

Definition 3. A feasible allocation x = (xi)i∈I is said to be ex-ante maximin efficient, if there does not exist another feasible 
allocation y = (yi)i∈I , such that yi ≽MP

i xi for all i, and yi ≻MP
i xi for at least one i.

Remark 1. It should be noted that the concepts maximin core allocations, maximin value allocations and maximin Walrasian 
expectations equilibrium allocations defined in de Castro and Yannelis (2009), Angelopoulos and Koutsougeras (2015), He and 
Yannelis (2015) are all individually rational and ex-ante maximin efficient.

Could one provide a noncooperative foundation for these notions? That is, can each individually rational and ex-ante 
maximin efficient allocation be reached by means of noncooperation? We address this question in the next section.

3. Implementation

3.1. The direct revelation mechanism

A direct revelation mechanism, associated with an allocation and its underlying ambiguous asymmetric information 
economy, is a noncooperative game, in which agents (players) decide what to report after learning their types.

In the interim, each player i privately observes his type ti , and receives the initial endowment ei (ti). Then, each player i
reports t′

i ∈ Ti , but the report may not be truthful. A report t′
i is a lie if it differs from the player’s type ti .

Definition 4. A strategy of player i is a function si : Ti → Ti .

Let Si denote player i’s strategy set. Denote by S = ×i∈I Si the strategy set, and let s ∈ S denote a strategy profile. With a 
slightly abused notation, we use s (t) to denote the players’ reports, when they adopt the strategy profile s, and the realized 
state is t . That is, s (t) = (s1 (t1) , · · · , sN (tN)). Clearly, for any t ∈ T , s (t) ∈ ×i∈I T i .

The players’ reports are announced simultaneously. Based on the reports, redistribution takes place. Fig. 1 shows the 
time line.

A planned redistribution (net transfer) is the adjustments needed to go from the initial endowment e to a planned 
allocation x.

Definition 5. Let x be the planned allocation. The planned redistribution of agent i at state t is given by xi (t) − ei (t).

The actual redistribution, on the other hand, depends on the planned redistribution and the players’ reports.

1 See also de Castro et al. (2014).
2 In addition to the fact that maximin preferences solve the conflict between efficiency and incentive compatibility, it has been shown in Angelopoulos 

and Koutsougeras (2015), Aryal and Stauber (2014), de Castro and Yannelis (2009), de Castro et al. (2011, 2014), He and Yannelis (2015), Liu (2014) that 
the adoption of the maximin preferences provides new insights and superior outcomes than the Bayesian preferences. Furthermore, it is known that the 
maximin preferences solve the Ellsberg Paradox (see Ellsberg, 1961, and for example de Castro and Yannelis, 2013).
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Fig. 1. Time line.

Definition 6. Let x − e denote a planned redistribution, and t′
1, · · · , t′

N a list of reports. Then the actual redistribution of 
player i is given by

Di
(
x − e,

(
t′

1, · · · , t′
N
))

= xi
(
t′

1, · · · , t′
N
)
− ei

(
t′

1, · · · , t′
N
)
. (3)

Definition 7. Let gi be the outcome function of player i, which depends on the reports of the players and the realized state 
of nature, i.e.,

gi
((

t′
1, · · · , t′

N
)
, t

)
= ei (t) + Di

(
x − e,

(
t′

1, · · · , t′
N
))

, (4)

where ei (t) + Di
(
x − e,

(
t′

1, · · · , t′
N

))
is the bundle of the goods, that player i ends up consuming.

The implementation literature often assumes that the set of feasible alternatives is independent of the state of nature. 
It follows that if the realized state is t , and the players’ reported state is t̂ , then the players end up with the social choice 
x 
(
t̂
)
. The implicit assumption is that the social choice x 

(
t̂
)

is feasible at the state t . In our context, the players receive initial 
endowment first, and then redistribute the endowments based on their reports. The relevant feasibility condition is that each 
player is rich enough to participate in the revelation mechanism. That is, for each i, t and t̂ , we have ei (t) + xi

(
t̂
)
− ei

(
t̂
)
∈

Rℓ
+ .

Finally, each player i has a final payoff function. It tells us the final payoff that player i ends up, given a list of reports 
and a realized state of nature. Formally,

Definition 8. Denote by vi the final payoff function of player i. It takes the form of

vi
((

t′
1, · · · , t′

N
)
; t

)
= ui

(
ei (t) + Di

(
x − e,

(
t′

1, · · · , t′
N
))

; t
)
. (5)

A direct revelation mechanism associated with a planned allocation x and its underlying ambiguous asymmetric infor-
mation economy is a set $ =

〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
.

3.2. Maximin equilibrium

An immediate question is that, what would be a reasonable solution concept for $? In view of an ambiguous asymmetric 
information economy, the standard Bayesian Nash solution concept is not suitable here (see Example 1 in Section 3.3). Below 
we introduce the notion of maximin equilibrium.

Definition 9. In a direct revelation mechanism $ =
〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
, a strategy profile s∗ =

(
s∗

1, · · · , s∗
N

)
constitutes 

a maximin equilibrium (ME), if for each player i, his strategy s∗
i maximizes his interim payoff lower bound, that is, the 

function s∗
i : Ti → Ti satisfies, for each ti ,

min
t′−i ,t−i∈T−i

vi
(
s∗

i (ti) , t′
−i; ti, t−i

)
≥ min

t′−i ,t−i∈T−i

vi
(
t̂i, t′

−i; ti, t−i
)
, (6)

for all t̂i ∈ Ti , where t′
−i denotes the reports from all the other players, i.e., t′

−i ∈ T−i = × j≠i T j .

In other words, each player maximizes the payoff that takes into account the worst reports t′
−i of all the other players 

against him and also the worst state that can occur. Note, a state t = (ti, t−i) is made up with ti and t−i . In the interim, 
player i knows ti , so the worst state is determined by t−i . The maximin equilibrium simply says that every player adopts a 
criterion à la Wald (1950).

Remark 2. In contrast to the restricted maximin equilibrium notion of Dasgupta et al. (1979) and the consistent planning 
equilibrium of Bose and Renou (2014), our maximin equilibrium notion does not need each player to correctly guess his 
opponents’ strategies to reach an equilibrium. Furthermore, the maximin equilibrium is unique, whenever truth telling is 
optimal for each player. This is not necessarily the case with the restricted maximin equilibrium notion or the consistent 
planning equilibrium notion. This is the main reason, we introduce the notion of maximin equilibrium.
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Remark 3. Note that in equation (6), we take minima over t−i and t′
−i . The first one refers to the uncertainty with respect to 

the opponents’ types and the second one represents the strategic uncertainty, that is, it is related to possible false reports by 
opponents. Therefore, we treat strategic uncertainty in a similar way to the uncertainty with respect to types. This might be 
considered natural in some settings; for instance, when there is complete ignorance both with respect to types and actions. 
However, other formulations might be more convenient in different settings. An example of alternative formulation is the 
restricted maximin equilibrium introduced by Dasgupta et al. (1979, p. 207).

We study the implementation of an allocation with the help of its corresponding direct revelation mechanism. In partic-
ular, we say an allocation x is implementable, if x can be realized through a maximin equilibrium of the direct revelation 
mechanism $ =

〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
.

Let ME ($) denote the set of maximin equilibria of the mechanism $.

Definition 10. Let x be an allocation of an ambiguous asymmetric information economy E , and ME ($) the set of max-
imin equilibria of the mechanism $ =

〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
. We say that the allocation x is implementable as a maximin 

equilibrium of the mechanism $ if,

∃s∗ ∈ ME ($) , such that gi
(
s∗ (t) , t

)
= xi (t) ,

for each t ∈ T and for each i ∈ I .

Definition 11. We say that a strategy profile s is truth telling, if si (ti) = ti for all ti and i. We denote such a strategy profile 
by sT .

Remark 4. Clearly, if the truth telling strategy profile sT constitutes a maximin equilibrium of the mechanism $, i.e., sT ∈
ME ($), then the allocation x is implementable as a maximin equilibrium of the mechanism $.

Indeed, under the truth telling strategy profile sT , the list of reports associated with each state t is sT (t) = (t1, · · · , tN ). 
That is, the players always tell the truth. As a consequence, we have

gi

(
sT (t) , t

)
= gi ((t1, · · · , tN) , t)

= ei (t) + Di (x − e, (t1, · · · , tN))

= ei (t) + xi (t) − ei (t) = xi (t) ,

for each t ∈ T and for each i ∈ I – the requirement of Definition 10. Furthermore, when sT ∈ ME ($), we say $ has a truth 
telling maximin equilibrium.

3.3. An example

The example below shows that a maximin individually rational and maximin ex ante efficient allocation is implementable 
as a maximin equilibrium, while in the same economy a Bayesian individually rational and Bayesian ex ante efficient allo-
cation is not implementable as a Bayesian Nash equilibrium.

Example 1. There are two agents, two commodities, and four possible states of nature T = {a,b, c,d}. The ex post utility 
functions of the agents are

u1

(
c1

1, c2
1; t

)
=

⎧
⎪⎨

⎪⎩

√
c1

1 +
√

c2
1 if t ∈ {a,b}

√
c1

1 + 1.2
√

c2
1 if t ∈ {c,d}

u2

(
c1

2, c2
2; t

)
=

⎧
⎪⎨

⎪⎩

√
c1

2 +
√

c2
2 if t ∈ {a, c}

√
c1

2 + 1.2
√

c2
2 if t ∈ {b,d} .

The agents’ random initial endowments and type sets are:

(e1 (a) , e1 (b) , e1 (c) , e1 (d)) = [(8,6) ; (8,6) ; (10,4) ; (10,4)] ; T1 = {{a,b} , {c,d}}
(e2 (a) , e2 (b) , e2 (c) , e2 (d)) = [(4,10) ; (6,8) ; (4,10) ; (6,8)] ; T2 = {{a, c} , {b,d}} .

That is, when the state of nature is a, agent 1 is of type t1 = {a,b} and agent 2 is of type t2 = {a, c}. Furthermore, each 
agent assigns a probability of 1

2 on each of his type, µ1 ({a,b}) = µ1 ({c,d}) = 1
2 , and µ2 ({a, c}) = µ2 ({b,d}) = 1

2 .
Now, if we assume that the agents have Bayesian preferences and impose a common prior of probability 1

4 on each state 
of nature, then, allocation



L.I. de Castro et al. / Games and Economic Behavior 101 (2017) 20–33 25

x =
(

x1 (a) , x1 (b) , x1 (c) , x1 (d)
x2 (a) , x2 (b) , x2 (c) , x2 (d)

)
=

(
(6,8) ; (7,5.74) ; (7,8.26) ; (8,6)
(6,8) ; (7,8.26) ; (7,5.74) ; (8,6)

)
,

is individually rational and ex-ante efficient with respect to the Bayesian preferences, i.e., x is in the Bayesian core. Its 
corresponding planned redistribution is

x1 − e1 = [(−2,2) ; (−1,−0.26) ; (−3,4.26) ; (−2,2)]

x2 − e2 = [(2,−2) ; (1,0.26) ; (3,−4.26) ; (2,−2)] .

The direct revelation mechanism $ =
〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
has only one Bayesian Nash equilibrium. The equilibrium is 

s with s1 ({a,b}) = s1 ({c,d}) = {c,d}, and s2 ({a, c}) = s2 ({b,d}) = {b,d}. That is, regardless of the realized state, the players 
will agree that state d occurs and exchange 2 units of good 1 with 2 units of good 2. Consequently, the allocation

y =
(

y1 (a) , y1 (b) , y1 (c) , y1 (d)
y2 (a) , y2 (b) , y2 (c) , y2 (d)

)
=

(
(6,8) ; (6,8) ; (8,6) ; (8,6)
(6,8) ; (8,6) ; (6,8) ; (8,6)

)

is the unique Bayesian Nash equilibrium outcome. Clearly, the allocation x, which is different from y, is not implemented.
It turns out that if the agents have Wald-type maximin preferences, the allocation y is individually rational and ex-ante 

efficient with respect to the maximin preferences, i.e., y is in the maximin core. Furthermore, the agents are able to reach 
the allocation y through the direct revelation mechanism $ =

〈
I, S, y − e, {gi}i∈I , {vi}i∈I

〉
. Indeed, the planned redistribution 

y − e, which is uniform across states, is

y1 (a) − e1 (a) = y1 (b) − e1 (b) = y1 (c) − e1 (c) = x1 (d) − e1 (d) = (−2,2) ;
y2 (a) − e2 (a) = y2 (b) − e2 (b) = y2 (c) − e2 (c) = y2 (d) − e2 (d) = (2,−2) .

Regardless of the reports of the players and the realized state, the transfer will be the same, i.e., two units of good 1 for 
two units of good 2. No player can benefit from lying. The unique3 maximin equilibrium is

s = (s1 ({a,b}) = {a,b} , s1 ({c,d}) = {c,d} ; s2 ({a, c}) = {a, c} , s2 ({b,d}) = {b,d}) .

Clearly, the players reach the allocation y through this equilibrium. That is, y is implemented.

In the next section we show that each maximin individually rational and ex ante maximin efficient allocation is imple-
mentable as a maximin equilibrium.

3.4. Implementation

This section presents our main result, i.e., in the mechanism $ =
〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
, where x is individually 

rational and ex-ante maximin efficient, no player has an incentive to lie, and the allocation x is implementable through its 
corresponding mechanism $. Formally:

Theorem 1. Denote by x an individually rational and ex-ante maximin efficient allocation, and ME ($) the set of maximin equilibria 
of the direct revelation mechanism $ =

〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
. Then, there exists a truth telling maximin equilibrium sT , which 

is the unique maximin equilibrium of the mechanism $ (i.e., 
{

sT
}

= ME ($)), for which we have gi
(
sT (t) , t

)
= xi (t), for each t ∈ T

and for each i ∈ I , i.e., the allocation x is implementable as a maximin equilibrium of its corresponding mechanism $.

Remark 5. The implementation shares some similarities with the (truthful) implementation of Dasgupta et al. (1979, p. 189)
– an allocation can be (truthfully) implemented, if there exists a direct revelation mechanism (a game in which players 
report their private information) for which truth telling is its equilibrium (based on some game theoretic solution concept), 
and the truth telling equilibrium yields the allocation as its outcome.

Remark 6. In contrast to the partial implementation with ambiguity sensitive individuals of Bose and Renou (2014), we have 
full implementation. But we differ from the full implementation of Jackson (1991), Palfrey and Srivastava’s (1989), and Hahn 
and Yannelis (2001), in that, we do not implement all equilibrium allocations. Instead, we pick an allocation, and fully im-
plement the allocation with a mechanism, à la Bergemann and Morris (2009). In particular, we show that given any arbitrary 
individually rational and ex-ante maximin efficient allocation x, its corresponding mechanism $ =

〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉

yields the allocation x as its unique maximin equilibrium outcome.
In addition, this paper contributes to the growing literature on efficiency with ambiguity sensitive individuals. de Castro 

and Yannelis (2009) show that there is no longer a conflict between efficiency and incentive compatibility, if and only if 

3 We assume that a player lies only if he can benefit from doing so.
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the agents’ preferences are maximin à la Wald. Bose et al. (2006) characterize the level of ambiguity needed for each full 
insurance auction to be optimal. Moreover, they pin down the conditions on the players’ multi-prior sets, that make the full 
insurance auction the unique optimal auction. Bodoh-Creed (2012) develops a payoff equivalence theorem for mechanisms 
with ambiguity sensitive participants. He also studies the constrained efficient, budget balanced bilateral trade mechanism 
and shows that increased ambiguity improves the efficiency of the mechanism. This is in the spirit of de Castro and Yannelis’ 
result (de Castro and Yannelis, 2009), who show that the Wald-type maximin preferences provide higher efficiency than 
Bayesian preferences.

Since maximin core allocations (de Castro et al., 2011), maximin value allocations (Angelopoulos and Koutsougeras, 2015)
and maximin Walrasian expectations equilibrium allocations (de Castro et al., 2011) are individually rational and ex-ante 
efficient, it follows from the main theorem that they are implementable as a maximin equilibrium.

3.5. Proof of the main theorem

Given a direct revelation mechanism $ =
〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
, we show that if the allocation x is a maximin 

individually rational and ex-ante maximin efficient allocation, then there does not exist a player i, a type ti , and a lie t̂i
(clearly, ti ≠ t̂i ), such that

min
t′−i ,t−i∈T−i

vi
(
ti, t′

−i; ti, t−i
)
< min

t′−i ,t−i∈T−i

vi
(
t̂i, t′

−i; ti, t−i
)
. (7)

Suppose that there exist a player i, a type ti , and a lie t̂i , such that (7) holds. We will show that the feasible allocation 
x fails to be ex-ante efficient under the maximin preferences. The argument is along the lines of de Castro and Yannelis
(2009) Theorem 3.1.

The left hand side of (7) can be rewritten as

min
t′−i ,t−i∈T−i

vi
(
ti, t′

−i; ti, t−i
)
= min

t′−i∈T−i

ui
(
xi

(
ti, t′

−i

)
; ti, t′

−i

)
,

since the ex post utility function is private valued. Define an i-allocation of player i, zi (·), such that for each t′
−i ∈ T−i , 

vi
(
t̂i, t′

−i; ti, t′
−i

)
= ui

(
zi

(
ti, t′

−i

)
; ti, t′

−i

)
, and therefore, the right hand side of (7) can be rewritten as

min
t′−i ,t−i∈T−i

vi
(
t̂i, t′

−i; ti, t−i
)
= min

t′−i∈T−i

ui
(
zi

(
ti, t′

−i

)
; ti, t′

−i

)
.

Clearly, we have zi
(
ti, t′

−i

)
= ei

(
ti, t′

−i

)
+ xi

(
t̂i, t′

−i

)
− ei

(
t̂i, t′

−i

)
for each t′

−i . It follows from (7) that

min
t′−i∈T−i

ui
(
xi

(
ti, t′

−i

)
; ti, t′

−i

)
< min

t′−i∈T−i

ui
(
zi

(
ti, t′

−i

)
; ti, t′

−i

)
. (8)

Now, we define an allocation y that Pareto improves x under the maximin preferences. Define for each j ∈ I , the 
j-allocation y j (·) by

y j(t
′) =

{
z j

(
ti, t′

−i

)
= e j

(
ti, t′

−i

)
+ x j

(
t̂i, t′

−i

)
− e j

(
t̂i, t′

−i

)
if t′

i = ti and t′
−i ∈ T−i;

x j
(
t′) otherwise.

Notice that the allocation y is feasible. We only need to check the states at which x and y differ. For each state t′ with 
t′

i = ti and t′
−i ∈ T−i , we have

∑

j∈I

y j
(
t′) =

∑

j∈I

z j
(
t′) =

∑

j∈I

e j
(
ti, t′

−i

)
+

∑

j∈I

x j
(
t̂i, t′

−i

)
−

∑

j∈I

e j
(
t̂i, t′

−i

)
=

∑

j∈I

e j
(
ti, t′

−i

)
,

since x is feasible.
From (8) and the definition of yi , we have

min
t′−i∈T−i

ui
(
xi

(
ti, t′

−i

)
; ti, t′

−i

)
< min

t′−i∈T−i

ui
(

yi
(
ti, t′

−i

)
; ti, t′

−i

)
(9)

under the type ti ; and for any other type t′
i , we have

min
t′−i∈T−i

ui
(
xi

(
t′

i, t′
−i

)
; t′

i, t′
−i

)
= min

t′−i∈T−i

ui
(

yi
(
t′

i, t′
−i

)
; t′

i, t′
−i

)
.

Therefore, combined with the assumption on µi (·) (Assumption 1), we conclude that, for the player i,
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∑

t′i∈Ti

(

min
t′−i∈T−i

ui
(

yi
(
t′

i, t′
−i

)
; t′

i, t′
−i

)
)

µi
(
t′

i

)
>

∑

t′i∈Ti

(

min
t′−i∈T−i

ui
(
xi

(
t′

i, t′
−i

)
; t′

i, t′
−i

)
)

µi
(
t′

i

)
. (10)

That is, player i strictly prefers the i-allocation yi to the i-allocation xi under the maximin preferences. Now, it remains to 
show that for any other player k ̸= i, we have yk is preferred to xk under the maximin preferences.

Fix an arbitrary player k ̸= i, and an arbitrary type of player k, tk . Define Xk =
{

xk

(
tk, t′

−k

)
: t′

−k ∈ T−k

}
and Yk =

{
yk

(
tk, t′

−k

)
: t′

−k ∈ T−k

}
. We have Yk ⊂ Xk . Indeed, if t′

i = ti , then yk

(
tk, ti, t′

−k−i

)
= zk

(
tk, ti, t′

−k−i

)
= ek

(
tk, ti, t′

−k−i

)
+

xk

(
tk, t̂i, t′

−k−i

)
−ek

(
tk, t̂i, t′

−k−i

)
= xk

(
tk, t̂i, t′

−k−i

)
∈ Xk; Otherwise, yk

(
tk, t′

−k

)
= xk

(
tk, t′

−k

)
∈ Xk . Therefore, we have that

min
t′−k∈T−k

uk
(
xk

(
tk, t′

−k

)
; tk, t′

−k

)
≤ min

t′−k∈T−k

ui
(

yk
(
tk, t′

−k

)
; tk, t′

−k

)
.

Since the type tk is arbitrary, we conclude that

∑

t′k∈Tk

(

min
t′−k∈T−k

uk
(

yk
(
t′
k, t′

−k

)
; t′

k, t′
−k

)
)

µk
(
t′
k

)
≥

∑

t′k∈Tk

(

min
t′−k∈T−k

uk
(
xk

(
t′
k, t′

−k

)
; t′

k, t′
−k

)
)

µk
(
t′
k

)
.

Also, since player k ̸= i is arbitrary, we have for every player k ̸= i, yk is preferred to xk under the maximin preferences.
Thus, the feasible allocation y Pareto improves the allocation x under the maximin preferences, i.e., x fails to be an 

ex-ante maximin efficient allocation, a contradiction.
Finally, we show that the truth telling maximin equilibrium is the only maximin equilibrium of the mechanism $, i.e., {

sT
}

= ME ($). Suppose otherwise, that is, suppose both sT and s∗ are maximin equilibria of the mechanism $, and sT ≠ s∗ . 
The truth telling strategy profile sT is different from the strategy profile s∗ , implies that there must exist a player i and a 
type ti , such that sT

i (ti) = ti ≠ t̂i = s∗
i (ti). But s∗

i (ti) = t̂i ≠ ti holds, only if lying makes type ti player i strictly better off,4

i.e.,

min
t′−i ,t−i∈T−i

vi
(
t̂i, t′

−i; ti, t−i
)
> min

t′−i ,t−i∈T−i

vi
(
ti, t′

−i; ti, t−i
)
,

a contradiction to the fact that the truth telling strategy profile constitutes a maximin equilibrium of the mechanism.
Clearly, the individually rational and ex-ante maximin efficient allocation x is implemented. Indeed, under the truth 

telling strategy profile sT , the list of reports associated to each state t is sT (t) = t . As a consequence, we have

gi

(
sT (t) , t

)
= gi ((t1, · · · , tN) , t)

= ei (ti) + Di (x − e, (t1, · · · , tN))

= ei (ti) + xi (t) − ei (t) = xi (t) ,

for each t ∈ T and for each i ∈ I – the requirement of Definition 10, and this completes the proof of the Theorem.

4. Relationship with de Castro–Yannelis

We discuss the relationship between this work and the one of de Castro and Yannelis (2009).

Definition 12 (de Castro–Yannelis). An allocation x is (maximin) incentive compatible if there is no i, t′
i , t

′′
i such that

min
t−i ,t′−i∈T−i

ui
(
ei

(
t′

i, t′
−i

)
+ xi

(
t′′

i , t′
−i

)
− ei

(
t′′

i , t′
−i

)
; t′

i, t−i
)

> min
t−i ,t′−i∈T−i

ui
(
xi

(
t′

i, t′
−i

)
; t′

i, t−i
)
. (11)

Definition 13 (de Castro–Yannelis). An allocation x is (interim) maximin efficient, if there is no feasible allocation y = (yi)i∈I
such that

min
t−i ,t′−i∈T−i

ui
(

yi
(
ti, t′

−i

)
; ti, t−i

)
≥ min

t−i ,t′−i∈T−i

ui
(
xi

(
ti, t′

−i

)
; ti, t−i

)
(12)

for every i and ti ∈ Ti , with strict inequality for some i and ti .

4 We assume that a player lies, only if he can benefit from doing so.
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Theorem 2 (de Castro–Yannelis Theorem 3.1). If x = (xi)i∈I is an (interim) maximin efficient allocation, then x is maximin incentive 
compatible.

Notice that de Castro and Yannelis (2009) work with an interim efficiency notion, whereas we work with an ex ante effi-
ciency notion. Example 2 below shows that a maximin individually rational and ex ante maximin efficient allocation, which 
is maximin incentive compatible in the sense of de Castro and Yannelis (2009), may not be implementable as a maximin 
equilibrium through its corresponding direct revelation mechanism.5 Thus, in general an allocation’s implementability does 
not follow from its maximin incentive compatibility.

Example 2. There are two agents, two commodities x and y, and four possible states of nature T = {a,b, c,d}. The ex post 
utility function of agent i = 1, 2 is

ui
(
cx

i , c y
i ; t

)
=

⎧
⎨

⎩

√
cx

i +
√

c y
i if t ∈ {a, c}

10
√

cx
i + 10

√
c y

i if t ∈ {b,d} .

The agents’ random initial endowments and type sets are:

(e1 (a) , e1 (b) , e1 (c) , e1 (d)) = [(10,4) ; (8,2) ; (8,2) ; (3,4)] ; T1 = {{a,d} , {b, c}}
(e2 (a) , e2 (b) , e2 (c) , e2 (d)) = [(4,9) ; (4,9) ; (2,8) ; (1,3)] ; T2 = {{a,b} , {c,d}} .

That is, when the state of nature is a, agent 1 (in the interim) knows that his type is t1 = {a,d} and agent 2 knows that 
her type is t2 = {a,b}. Notice that the agents’ ex post utility functions and initial endowments are state dependent, but 
they are not private information measurable. Furthermore, each agent assigns a probability of 1

2 on each of his or her type, 
µ1 ({a,d}) = µ1 ({b, c}) = 1

2 , and µ2 ({a,b}) = µ2 ({c,d}) = 1
2 .

A maximin individually rational and ex-ante maximin efficient allocation is

x =
(

x1 (a) , x1 (b) , x1 (c) , x1 (d)
x2 (a) , x2 (b) , x2 (c) , x2 (d)

)
=

(
(7,6.5) ; (5,5) ; (5,5) ; (1,6)
(7,6.5) ; (7,6) ; (5,5) ; (3,1)

)
.

Its corresponding planned redistribution is

x1 − e1 = [(−3,2.5) ; (−3,3) ; (−3,3) ; (−2,2)]

x2 − e2 = [(3,−2.5) ; (3,−3) ; (3,−3) ; (2,−2)] .

We show below that the allocation x is maximin incentive compatible (de Castro and Yannelis, 2009). That is, for every 
i, t′

i , t
′′
i , we have

min
t−i ,t′−i∈T−i

ui
(
ei

(
t′

i, t′
−i

)
+ xi

(
t′′

i , t′
−i

)
− ei

(
t′′

i , t′
−i

)
; t′

i, t−i
)

≤ min
t−i ,t′−i∈T−i

ui
(
xi

(
t′

i, t′
−i

)
; t′

i, t−i
)
.

For i = 1, t′
i = {a,d}, t′′

i = {b, c}, we have

min
t−i ,t′−i∈T−i

ui
(
ei

({a,d} , t′
−i

)
+ xi

({b, c} , t′
−i

)
− ei

({b, c} , t′
−i

)
; {a,d} , t−i

)

= min
{√

7 +
√

7,
√

0 +
√

7,10
√

7 + 10
√

7,10
√

0 + 10
√

7
}

= 2.646 < 3.449 =
min

{√
7 +

√
6.5,

√
1 +

√
6,10

√
7 + 10

√
6.5,10

√
1 + 10

√
6
}

=

min
t−i ,t′−i∈T−i

ui
(
xi

({a,d} , t′
−i

)
; {a,d} , t−i

)
.

For i = 1, t′
i = {b, c}, t′′

i = {a,d}, we have

5 This example is motivated by a referee who raised the question as to how our implementation notion is related to de Castro and Yannelis (2009)’s 
Theorem 2 above.
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min
t−i ,t′−i∈T−i

ui
(
ei

({b, c} , t′
−i

)
+ xi

({a,d} , t′
−i

)
− ei

({a,d} , t′
−i

)
; {b, c} , t−i

)

= min
{√

5 +
√

4.5,
√

6 +
√

4,10
√

5 + 10
√

4.5,10
√

6 + 10
√

4
}

= 4.357 < 4.472 =
min

{√
5 +

√
5,

√
5 +

√
5,10

√
5 + 10

√
5,10

√
5 + 10

√
5
}

=
min

t−i ,t′−i∈T−i

ui
(
xi

({b, c} , t′
−i

)
; {b, c} , t−i

)
.

For i = 2, t′
i = {a,b}, t′′

i = {c,d}, we have

min
t−i ,t′−i∈T−i

ui
(
ei

({a,b} , t′
−i

)
+ xi

({c,d} , t′
−i

)
− ei

({c,d} , t′
−i

)
; {a,b} , t−i

)

= min
{√

6 +
√

7,
√

7 +
√

6,10
√

6 + 10
√

7,10
√

7 + 10
√

6
}

= 5.095 =
min

{√
7 +

√
6.5,

√
7 +

√
6,10

√
7 + 10

√
6.5,10

√
7 + 10

√
6
}

=
min

t−i ,t′−i∈T−i

ui
(
xi

({a,b} , t′
−i

)
; {a,b} , t−i

)
.

For i = 2, t′
i = {c,d}, t′′

i = {a,b}, we have

min
t−i ,t′−i∈T−i

ui
(
ei

({c,d} , t′
−i

)
+ xi

({a,b} , t′
−i

)
− ei

({a,b} , t′
−i

)
; {c,d} , t−i

)

= min
{√

4 +
√

0.5,
√

5 +
√

5,10
√

4 + 10
√

0.5,10
√

5 + 10
√

5
}

= 2.707 < 2.732 =
min

{√
5 +

√
5,

√
3 +

√
1,10

√
5 + 10

√
5,10

√
3 + 10

√
1
}

=
min

t−i ,t′−i∈T−i

ui
(
xi

({c,d} , t′
−i

)
; {c,d} , t−i

)
.

Clearly, the allocation x is maximin incentive compatible.
However, x is not implementable as a maximin equilibrium. Indeed, the direct revelation mechanism $ =

〈
I, S, x − e,

{gi}i∈I , {vi}i∈I
〉

has only one maximin equilibrium. The equilibrium is s with s1 ({a,d}) = s1 ({b, c}) = {b, c}, and s2 ({a,b}) =
s2 ({c,d}) = {a,b}. That is, the agents’ agreed state is always b, and the redistribution is x (b) − e (b). Consequently, the 
allocation

y =
(

y1 (a) , y1 (b) , y1 (c) , y1 (d)
y2 (a) , y2 (b) , y2 (c) , y2 (d)

)
=

(
(7,7) ; (5,5) ; (5,5) ; (0,7)
(7,6) ; (7,6) ; (5,5) ; (4,0)

)

is the unique maximin equilibrium outcome. Clearly, y is different from x.

Below we outline an alternative proof of our implementation result using the result of de Castro and Yannelis (2009)
(Theorem 2 above).

Lemma 1. If an allocation x is maximin incentive compatible, then it is also implementable as a maximin equilibrium of the mechanism 
$ =

〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
, provided that the initial endowment ei is private information measurable for each i (i.e., for each i, 

ei (ti, t−i) = ei
(
ti, t′

−i

)
for all t−i and t′

−i ).

Proof. Suppose that the allocation x is maximin incentive compatible for the economy. Furthermore, assume that x is not 
implementable as a maximin equilibrium through $ =

〈
I, S, x − e, {gi}i∈I , {vi}i∈I

〉
. We will reach a contradiction, with which 

we conclude the proof.
Since each player’s type set is a finite set, the mechanism $ always has a maximin equilibrium. The allocation x is not 

implementable implies that for every s∗ ∈ ME ($), there exist an i ∈ I and a t ∈ T such that gi (s∗ (t) , t) ≠ xi (t). It follows 
that the truth telling strategy profile sT (Definition 11) is not a maximin equilibrium. That is, there exists a player i, a type 
t′

i , and a lie t′′
i , such that

min
t′−i ,t−i∈T−i

vi
(
t′

i, t′
−i; t′

i, t−i
)
< min

t′−i ,t−i∈T−i

vi
(
t′′

i , t′
−i; t′

i, t−i
)
. (13)
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Based on (3), (4) and (5), we can rewrite the left hand side of (13) as

min
t′−i ,t−i∈T−i

vi
(
t′

i, t′
−i; t′

i, t−i
)
= min

t′−i ,t−i∈T−i

ui
(

gi
((

t′
i, t′

−i

)
, t′

i, t−i
)
; t′

i, t−i
)

= min
t′−i ,t−i∈T−i

ui
(
ei

(
t′

i, t−i
)
+ Di

(
x − e,

(
t′

i, t′
−i

))
; t′

i, t−i
)

= min
t′−i ,t−i∈T−i

ui
(
ei

(
t′

i, t−i
)
+ xi

(
t′

i, t′
−i

)
− ei

(
t′

i, t′
−i

)
; t′

i, t−i
)

= min
t′−i ,t−i∈T−i

ui
(
xi

(
t′

i, t′
−i

)
; t′

i, t−i
)
.

Also, we can rewrite the right hand side of (13) as

min
t′−i ,t−i∈T−i

vi
(
t′′

i , t′
−i; t′

i, t−i
)
= min

t′−i ,t−i∈T−i

ui
(

gi
((

t′′
i , t′

−i

)
, t′

i, t−i
)
; t′

i, t−i
)

= min
t′−i ,t−i∈T−i

ui
(
ei

(
t′

i, t−i
)
+ Di

(
x − e,

(
t′′

i , t′
−i

))
; t′

i, t−i
)

= min
t′−i ,t−i∈T−i

ui
(
ei

(
t′

i, t−i
)
+ xi

(
t′′

i , t′
−i

)
− ei

(
t′′

i , t′
−i

)
; t′

i, t−i
)
.

That is, we have

min
t−i ,t′−i∈T−i

ui
(
ei

(
t′

i, t−i
)
+ xi

(
t′′

i , t′
−i

)
− ei

(
t′′

i , t′
−i

)
; t′

i, t−i
)

> min
t−i ,t′−i∈T−i

ui
(
xi

(
t′

i, t′
−i

)
; t′

i, t−i
)
. (14)

Finally, since the initial endowment ei is private information measurable, (14) says that the allocation x is not maximin 
incentive compatible, which is a contradiction. ✷

Lemma 2. Suppose the ex post utility functions are private information measurable (i.e., for each i, ui (ci; ti, t−i) = ui
(
ci; ti, t′

−i

)
for 

all t−i and t′
−i ), and Assumption 1 holds. If allocation x is ex ante maximin efficient (as of Definition 3), then it is interim maximin 

efficient in the sense of de Castro–Yannelis.

Proof. Suppose that the allocation x is ex ante maximin efficient and not interim maximin efficient. We will reach a con-
tradiction, which concludes the proof.

When the ex post utility functions are private information measurable, the allocation x is not interim maximin efficient 
implies that there exists a feasible allocation y = (yi)i∈I such that

min
t−i∈T−i

ui (yi (ti, t−i) ; ti, t−i) ≥ min
t−i∈T−i

ui (xi (ti, t−i) ; ti, t−i) (15)

for every i and ti ∈ Ti , with strict inequality for some i and ti .
Since µi (·) > 0 by Assumption 1, we have that, for all i, yi ≽MP

i xi ,

∑

ti∈Ti

(
min

t−i∈T−i
ui (yi (ti, t−i) ; ti, t−i)

)
µi (ti) ≥

∑

ti∈Ti

(
min

t−i∈T−i
ui (xi (ti, t−i) ; ti, t−i)

)
µi (ti)

and yi ≻MP
i xi for at least one i. That is, x is not ex-ante maximin efficient, which is a contradiction. ✷

Now, we provide an alternative indirect proof of our main theorem using the result of de Castro–Yannelis (Theorem 2
above). Let x be a maximin individually rational and ex-ante maximin efficient allocation. By Lemma 2, x is interim maximin 
efficient in the sense of de Castro–Yannelis, provided that the agents’ ex post utility functions are private information 
measurable and Assumption 1 holds. Now, by the result of de Castro–Yannelis (Theorem 2 above), x is maximin incentive 
compatible. Finally, by Lemma 1, x is implementable as a maximin equilibrium, provided that the agents’ initial endowments 
are private information measurable.

5. Relationship with robust implementation (Bergemann and Morris)

The seminal work of Bergemann and Morris (2005) characterizes the environments, in which a social choice function 
robustly satisfies the interim incentive constraints, i.e., satisfies the interim incentive constraints for any type space, if and 
only if the ex post incentive constraints are satisfied. In Bergemann and Morris (2005), an agent’s type contains a description 
of his beliefs and his payoff type. The net transfer x − e of Example 3 below is not ex post incentive compatible, where x
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is maximin individually rational and ex-ante maximin efficient. Therefore, x − e is not robustly interim incentive compatible 
in the sense of Bergemann and Morris (2005).

In Bergemann and Morris (2005), a social choice function f satisfies ex post incentive compatibility if for all i, t and t′
i :

ûi ( f (ti, t−i) , ti, t−i) ≥ ûi
(

f
(
t′

i, t−i
)
, ti, t−i

)
.

Also, in Bergemann and Morris (2009), a social choice function f satisfies strict ex post incentive compatibility if for all i, 
t′

i ≠ ti and t−i :

ûi ( f (ti, t−i) , ti, t−i) > ûi
(

f
(
t′

i, t−i
)
, ti, t−i

)
.

These notions can be applied to our context directly, by letting f = x − e, and ûi
(

f
(
t′

i, t−i
)
, ti, t−i

)
= ui

(
ei (ti, t−i) +

x 
(
t′

i, t−i
)
− e 

(
t′

i, t−i
)
, ti, t−i

)
.

Example 3. There are two agents 1, 2, two commodities c1, c2, and four possible states of nature T = {a,b, c,d}. The ex post 
utility functions of the agents are

u1

(
c1

1, c2
1; t

)
=

⎧
⎪⎨

⎪⎩

1.22
√

c1
1 + 1.22

√
c2

1 if t ∈ {a,b}
√

c1
1 + 1.05

√
c2

1 if t ∈ {c,d}

u2

(
c1

2, c2
2; t

)
=

⎧
⎪⎨

⎪⎩

1.02
√

c1
2 +

√
c2

2 if t ∈ {a,d}

1.2
√

c1
2 +

√
c2

2 if t ∈ {b, c} .

The agents’ random initial endowments and type sets are:

(e1 (a) , e1 (b) , e1 (c) , e1 (d)) = [(8,6) ; (8,6) ; (6,8) ; (6,8)] ; T1 = {{a,b} , {c,d}}
(e2 (a) , e2 (b) , e2 (c) , e2 (d)) = [(4,10) ; (6,6) ; (6,6) ; (4,10)] ; T2 = {{a,d} , {b, c}} .

That is, when the state of nature is a, agent 1 is of type t1 = {a,b} and agent 2 is of type t2 = {a,d}. Furthermore, agent 1 
assigns µ1 ({a,b}) = 1

3 and µ1 ({c,d}) = 2
3 to his types, and agent 2 assigns µ2 ({a,d}) = 2

3 and µ2 ({b, c}) = 1
3 to her types.

The allocation

x =
(

x1 (a) , x1 (b) , x1 (c) , x1 (d)
x2 (a) , x2 (b) , x2 (c) , x2 (d)

)

=
(

(6.8,7.51) ; (7.116,7.178) ; (5.8,8.4) ; (4.901,9.439)
(5.2,8.49) ; (6.884,4.822) ; (6.2,5.6) ; (5.099,8.561)

)

is individually rational and ex-ante efficient with respect to the maximin preferences. Its corresponding planned redistribu-
tion is

x − e =
(

x1 (a) − e1 (a) , x1 (b) − e1 (b) , x1 (c) − e1 (c) , x1 (d) − e1 (d)
x2 (a) − e2 (a) , x2 (b) − e2 (b) , x2 (c) − e2 (c) , x2 (d) − e2 (d)

)

=
(

(−1.2,1.51) ; (−0.884,1.178) ; (−0.2,0.4) ; (−1.099,1.439)
(1.2,−1.51) ; (0.884,−1.178) ; (0.2,−0.4) ; (1.099,−1.439)

)
,

which is not ex post incentive compatible. Indeed, at state a, agent 1’s type is {a,b}. Reporting the truth (i.e., reporting 
{a,b}) gives him a payoff of

u1 (g ({a,b} , {a,d} ,a) ;a) = u1 (e1 (a) + x1 (a) − e1 (a) ;a)

= u1 ((6.8,7.51) ;a)

= 1.22
√

6.8 + 1.22
√

7.51 = 6.525,

which is strictly smaller than his payoff of telling a lie (i.e., reporting {c,d})

u1 (g ({c,d} , {a,d} ,a) ;a) = u1 (e1 (a) + x1 (d) − e1 (d) ;a)

= u1 ((6.901,7.439) ;a)

= 1.22
√

6.901 + 1.22
√

7.439 = 6.532.
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Furthermore, the readers may wonder if there is any relationship of our ambiguous implementation with Bergemann 
and Morris (2009) on robust implementation. We will show that the maximin implementation of this paper and the robust 
implementation are different.

The main difference is that we use the maximin preferences and the maximin equilibrium concept, whereas robust im-
plementation uses the Bayesian preferences and the idea of iterative elimination of never best responses. In our framework, 
each player takes into account the worst actions of all the other agents against him and also the worst state that can occur. 
The method of iterative elimination of never best responses is defined for players with Bayesian preferences. Each player 
has a set of probability assessments on the unknowns. A player considers each probability in the set in the process of 
deletion. A social choice function x is robustly implemented if at each state of nature t , the survived messages, through the 
outcome function, give us the correct consumption bundle, i.e., x (t). In other words, x has to be the unique outcome of the 
mechanism. See Bergemann and Morris (2009, 2011).

Robust implementation may not be possible in our context. In Example 3, the maximin individually rational and maximin 
ex-ante efficient allocation x is implementable as a maximin equilibrium. However, the responsive social choice function 
x − e in Example 3 is not strictly ex post incentive compatible, and by Theorem 2 of Bergemann and Morris (2009), x − e is 
not robustly implementable.

6. Concluding remarks

We showed that each individually rational and ex-ante maximin efficient allocation is implementable by means of 
noncooperative behavior under ambiguity. That is, given any arbitrary individually rational and ex-ante maximin efficient 
allocation, its corresponding direct revelation mechanism yields the allocation as its unique maximin equilibrium outcome. 
As a consequence, any maximin core allocation, maximin value allocation and maximin Walrasian equilibrium allocation is 
implementable.

The new equilibrium notion (maximin equilibrium) takes into account the agents’ information constraints – the inability 
to assign a probability to every state of nature, and to each possible action of his opponents. In a maximin equilibrium, each 
agent maximizes his payoff lowest bound, i.e., each agent maximizes the payoff that takes into account the worst actions 
of all the other agents against him and also the worst state that can occur. It turns out that, such a noncooperative be-
havior (i.e., the maximin equilibrium) enables agents to reach a desirable outcome, i.e., an individually rational and ex-ante 
maximin efficient allocation, which is also incentive compatible.

The method of iterative elimination as used in robust implementation (Bergemann and Morris, 2009) does not give the 
same result in our context. Since this method is defined for players with Bayesian preferences, it is an open question if 
the introduction of maximin preferences on the method of iterative deletion will provide similar results with ours. We 
conjecture that one way to proceed is to regard the unknowns as the realized state of nature and the actions of all the 
other players. Thus, having maximin preferences means that each player chooses the best responses taking into account 
the worst probability assessment on the unknowns. When taking into account all possible probabilities, this is equivalent to 
each player maximizing his payoff taking into account the worst actions of all the other agents against him and also the 
worst state that can occur, i.e., the maximin equilibrium notion. However, this is a topic for further research.

It is not yet known whether or not the result of this paper holds in the presence of infinitely many states. The difficulty 
arises from the fact that the minimum of the utility over even countably many states may not exist. Also, the implementa-
tion of interim efficient notions seem to be an open question. Some progress in this direction was made in Liu (2015), who 
showed that the maximin rational expectations equilibrium is implementable as a maximin equilibrium.
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